Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Patrick Höss,* Gundula Starkulla and Thomas Schleid

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Correspondence e-mail:
hoess@iac.uni-stuttgart.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{Te}-\mathrm{O})=0.007 \AA$
R factor $=0.034$
$w R$ factor $=0.074$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Lutetium(III) oxotellurate(IV), $\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$

Rare-earth(III) oxotellurates(IV) with the composition $M_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$ are known for yttrium and all lanthanides except promethium and lutetium from single-crystal X-ray structure determinations. Single crystals of the last missing non-radioactive isostructural compound, $\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$, can now be obtained by modifying the common method of synthesis from the binary oxides $\left(\mathrm{Lu}_{2} \mathrm{O}_{3}\right.$ and $\mathrm{TeO}_{2} ; 1: 4$ molar ratio using torch-sealed non-evacuated silica ampoules as reaction containers. The structure contains layers of edge-sharing $\left[\mathrm{LuO}_{8}\right]$ polyhedra connected by oxotellurate(IV) chains. These consist of $\left[\mathrm{TeO}_{3}\right]^{2-}$ and $\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]^{2-}$ anions (with $\psi^{1}-$ tetrahedral oxygen coordination for all central Te^{4+} cations) linked by strong secondary $\mathrm{Te}-\mathrm{O}$ interactions.

Comment

$\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$ is isostructural to all other known rare-earth(III) oxotellurates(IV) of the type $M_{2} \mathrm{Te}_{4} \mathrm{O}_{11}(M=\mathrm{Y}, \mathrm{La}-\mathrm{Nd}$ and Sm-Yb; Castro et al., 1990; Weber et al., 2001; Ijjaali et al., 2003; Höss et al., 2004; Meier \& Schleid, 2004; Shen \& Mao, 2004). The structure contains only one lutetium site, where Lu^{3+} is coordinated by eight O atoms in the shape of a distorted trigonal dodecahedron (Fig. 1). The $\left[\mathrm{LuO}_{8}\right]$ polyhedra $[\mathrm{Lu}-\mathrm{O}=2.189$ (7)-2.480 (7) \AA] form reticulated layers parallel to the (001) plane by sharing three edges each. The two tellurium sites are each coordinated by four (better: $3+1$) O atoms. Three of them bond covalently $[\mathrm{Te}-\mathrm{O}=1.841$ (7)$2.023(4) \AA$ A to each Te^{4+} cation and form ψ^{1}-tetrahedra together with the lone pair. The fourth O atom belongs to the primary coordination sphere of the other Te^{4+} cation [$\mathrm{Te} 1-$ $\mathrm{O} 4=2.567$ (7) \AA and $\mathrm{Te} 2-\mathrm{O} 1=2.312$ (7) \AA], so that the

Figure 1

The distorted trigonal dodecahedral coordination of the Lu^{3+} cation. Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes are as in Table 1.

Received 13 May 2005 Accepted 19 May 2005 Online 28 May 2005

Figure 2
Double chains built up by oxotellurate(IV) units, $\left[\mathrm{TeO}_{3}\right]^{2-}$ and $\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]^{2-}$, in the direction of the a axis.
alternating oxotellurate units build up zigzag chains in the direction of the a axis (Fig. 2). These chains are located above and below the reticulated layers of condensed $\left[\mathrm{LuO}_{8}\right]$ polyhedra with the Te atoms lying within the meshes (Fig. 3). Through $\mathrm{Te} 2-\mathrm{O} 6-\mathrm{Te} 2$ bridges $[\mathrm{Te} 2-\mathrm{O} 6=2.023$ (4) \AA and $\left.\mathrm{Te} 2-\mathrm{O} 6-\mathrm{Te} 2=138.9(5)^{\circ}\right]$, the tellurate units, $\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]^{2-}$, connect these layers and build up a three-dimensional structure (Fig. 4). Between the layers, there is still enough space left to accommodate the lone pairs of the Te^{4+} cations. The motifs of mutual adjunction (Hoppe, 1980) and the coordination numbers (CN) are shown in Table 2. With the strong secondary $\mathrm{Te}-\mathrm{O}$ interactions disregarded, the structure of $\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$ could be formulated as $\mathrm{Lu}_{2}\left[\mathrm{TeO}_{3}\right]_{2}\left[\mathrm{Te}_{2} \mathrm{O}_{5}\right]$.

Experimental

Single crystals of $\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$ were grown in torch-sealed but nonevacuated silica ampoules by fusing a mixture of $\mathrm{Lu}_{2} \mathrm{O}_{3}$ and TeO_{2} in a 1:4 molar ratio at 1123 K for 10 d . CsCl was used as a flux to improve single-crystal growth. The ampoules were cooled to 923 K over two days and finally to room temperature. The common method of synthesis (Weber et al., 2001) using evacuated silica ampoules always leads to a two-phase product consisting of the formal dismutation compounds $\mathrm{Lu}_{2} \mathrm{Te}_{3} \mathrm{O}_{9}$ (Meier \& Schleid, 2002) and $\mathrm{Lu}_{2} \mathrm{Te}_{5} \mathrm{O}_{13}$ (Meier \& Schleid, 2005). The slightly higher pressure (~ 4 bar at 1123 K) in the sealed air-containing ampoules seems to promote the formation of $\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$, where Lu^{3+} has an unusually large coordination number, with eight O atoms at more or less equal distances.

Crystal data

$\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$
$M_{r}=1036.34$
Monoclinic, C2/c
$a=12.2953$ (8) A
$b=5.0596$ (3) \AA
$c=15.9134$ (9) \AA
$\beta=106.202$ (7) ${ }^{\circ}$
$V=950.64(10) \AA^{3}$
$Z=4$

Data collection

[^0]
$D_{x}=7.241 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 3912 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=32.74 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Spheroid, colourless
$0.04 \times 0.03 \times 0.02 \mathrm{~mm}$

791 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.096$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-16 \rightarrow 16$
$k=-6 \rightarrow 6$
$l=-20 \rightarrow 20$

Figure 3
Reticulated layers of triple edge-shared $\left[\mathrm{LuO}_{8}\right]$ polyhedra parallel to the (001) plane. The Te^{4+} cations lie above and below the meshes.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.074$
$S=1.00$
1108 reflections
79 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0272 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.86 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.38 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00360 (11)

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Lu}-\mathrm{O} 3^{\text {i }}$	2.189 (7)	Te1-O3	1.871 (7)
$\mathrm{Lu}-\mathrm{O}^{\text {ii }}$	2.218 (7)	Te1-O2	1.885 (7)
$\mathrm{Lu}-\mathrm{O} 2^{\text {iii }}$	2.243 (7)	Te1-O1	1.892 (7)
$\mathrm{Lu}-\mathrm{O} 2^{\text {ii }}$	2.327 (7)	$\mathrm{Te} 1-\mathrm{O}{ }^{\text {vii }}$	2.567 (7)
$\mathrm{Lu}-\mathrm{O} 4^{\text {iv }}$	2.365 (7)	$\mathrm{Te} 2-\mathrm{O} 5^{\text {iv }}$	1.841 (7)
$\mathrm{Lu}-\mathrm{O} 1^{\text {iv }}$	2.416 (7)	$\mathrm{Te} 2-\mathrm{O} 4^{\mathrm{iv}}$	1.912 (7)
$\mathrm{Lu}-\mathrm{O}^{\text {v }}$	2.471 (7)	Te2-O6	2.023 (4)
$\mathrm{Lu}-\mathrm{O}^{\text {vi }}$	2.480 (7)	Te2-O1 ${ }^{\text {iv }}$	2.312 (7)
$\mathrm{Te} 2^{\text {vi }}-\mathrm{O} 6-\mathrm{Te} 2$	138.9 (5)		

Table 2
Motifs of mutual adjunction (Hoppe, 1980) and coordination numbers (CN).

	O1	O2	O3	O4	O5	O6	CN
Lu	$1 / 1$	$2 / 2$	$2 / 2$	$2 / 2$	$1 / 1$	$0 / 0$	8
Te 1	$1 / 1$	$1 / 1$	$1 / 1$	$0+1 / 0+1$	$0 / 0$	$0 / 0$	$3+1$
Te 2	$0+1 / 0+1$	$0 / 0$	$0 / 0$	$1 / 1$	$1 / 1$	$1 / 2$	$3+1$
CN	$2+1$	3	3	$3+1$	2	2	-

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

Figure 4
Crystal structure of $\mathrm{Lu}_{2} \mathrm{Te}_{4} \mathrm{O}_{11}$ viewed along the b axis. The oxotellurate(IV) double chains connect the reticulated layers of condensed $\left[\mathrm{LuO}_{8}\right]$ polyhedra through $\mathrm{Te} 2-\mathrm{O} 6-\mathrm{Te} 2$ bridges.

This work is supported by the state of Baden-Württemberg and the Deutsche Forschungsgemeinschaft (DFG). We thank Dr Falk Lissner and Dr Ingo Hartenbach for the data collection on the diffractometer.

References

Brandenburg, K. (2005). DIAMOND. Version 3.0d. Crystal Impact GbR, Bonn, Germany.
Castro, A., Enjalbert, R., Lloyd, D., Rasines, I. \& Galy, J. (1990). J. Solid State Chem. 85, 100-107.
Hoppe, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 110-125.
Höss, P., Meier, S. F. \& Schleid, Th. (2004). Z. Kristallogr. Suppl. 21, 162.
Ijjaali, I., Flaschenriem, C. \& Ibers, J. A. (2003). J. Alloys Compd, 354, 115.
Meier, S. F. \& Schleid, Th. (2002). Z. Kristallogr. Suppl. 19, 113.
Meier, S. F. \& Schleid, Th. (2004). Z. Naturforsch. Teil B, 59, 881-888.
Meier, S. F. \& Schleid, Th. (2005). Z. Naturforsch. Teil B, 60. In the press.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, Y.-L. \& Mao, J.-G. (2004). J. Alloys Compd. 385, 86-89.
Stoe \& Cie (1998). X-SHAPE. Version 1.03. Stoe \& Cie, Darmstadt, Germany. Weber, F. A., Meier, S. F. \& Schleid, Th. (2001). Z. Anorg. Allg. Chem. 627, 2225-2231.

[^0]: Nonius KappaCCD diffractometer φ and ω scans
 Absorption correction: numerical (X-SHAPE; Stoe \& Cie, 1998) $T_{\text {min }}=0.320, T_{\text {max }}=0.539$
 10819 measured reflections
 1108 independent reflections

