Received 13 May 2005 Accepted 19 May 2005

Online 28 May 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Patrick Höss,* Gundula Starkulla and Thomas Schleid

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

Correspondence e-mail: hoess@iac.uni-stuttgart.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (Te–O) = 0.007 Å R factor = 0.034 wR factor = 0.074 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Lutetium(III) oxotellurate(IV), Lu₂Te₄O₁₁

Rare-earth(III) oxotellurates(IV) with the composition M_2 Te₄O₁₁ are known for yttrium and all lanthanides except promethium and lutetium from single-crystal X-ray structure determinations. Single crystals of the last missing non-radio-active isostructural compound, Lu₂Te₄O₁₁, can now be obtained by modifying the common method of synthesis from the binary oxides (Lu₂O₃ and TeO₂; 1:4 molar ratio) using torch-sealed non-evacuated silica ampoules as reaction containers. The structure contains layers of edge-sharing [LuO₈] polyhedra connected by oxotellurate(IV) chains. These consist of [TeO₃]²⁻ and [Te₂O₅]²⁻ anions (with ψ^1 -tetrahedral oxygen coordination for all central Te⁴⁺ cations) linked by strong secondary Te-O interactions.

Comment

Lu₂Te₄O₁₁ is isostructural to all other known rare-earth(III) oxotellurates(IV) of the type M_2 Te₄O₁₁ (M = Y, La–Nd and Sm–Yb; Castro *et al.*, 1990; Weber *et al.*, 2001; Ijjaali *et al.*, 2003; Höss *et al.*, 2004; Meier & Schleid, 2004; Shen & Mao, 2004). The structure contains only one lutetium site, where Lu³⁺ is coordinated by eight O atoms in the shape of a distorted trigonal dodecahedron (Fig. 1). The [LuO₈] polyhedra [Lu–O = 2.189 (7)–2.480 (7) Å] form reticulated layers parallel to the (001) plane by sharing three edges each. The two tellurium sites are each coordinated by four (better: 3 + 1) O atoms. Three of them bond covalently [Te–O = 1.841 (7)–2.023 (4) Å] to each Te⁴⁺ cation and form ψ^1 -tetrahedra together with the lone pair. The fourth O atom belongs to the primary coordination sphere of the other Te⁴⁺ cation [Te1–O4 = 2.567 (7) Å and Te2–O1 = 2.312 (7) Å], so that the

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

inorganic papers

Figure 2 Double chains built up by oxotellurate(IV) units, $[TeO_3]^{2-}$ and $[Te_2O_5]^{2-}$, in the direction of the *a* axis.

alternating oxotellurate units build up zigzag chains in the direction of the *a* axis (Fig. 2). These chains are located above and below the reticulated layers of condensed [LuO₈] polyhedra with the Te atoms lying within the meshes (Fig. 3). Through Te2-O6-Te2 bridges [Te2-O6 = 2.023 (4) Å and Te2-O6-Te2 = 138.9 (5)°], the tellurate units, [Te₂O₅]²⁻, connect these layers and build up a three-dimensional structure (Fig. 4). Between the layers, there is still enough space left to accommodate the lone pairs of the Te⁴⁺ cations. The motifs of mutual adjunction (Hoppe, 1980) and the coordination numbers (CN) are shown in Table 2. With the strong secondary Te-O interactions disregarded, the structure of Lu₂Te₄O₁₁ could be formulated as Lu₂[TeO₃]₂[Te₂O₅].

Experimental

Single crystals of Lu₂Te₄O₁₁ were grown in torch-sealed but nonevacuated silica ampoules by fusing a mixture of Lu₂O₃ and TeO₂ in a 1:4 molar ratio at 1123 K for 10 d. CsCl was used as a flux to improve single-crystal growth. The ampoules were cooled to 923 K over two days and finally to room temperature. The common method of synthesis (Weber *et al.*, 2001) using evacuated silica ampoules always leads to a two-phase product consisting of the formal dismutation compounds Lu₂Te₃O₉ (Meier & Schleid, 2002) and Lu₂Te₅O₁₃ (Meier & Schleid, 2005). The slightly higher pressure (~4 bar at 1123 K) in the sealed air-containing ampoules seems to promote the formation of Lu₂Te₄O₁₁, where Lu³⁺ has an unusually large coordination number, with eight O atoms at more or less equal distances.

Crystal data

$Lu_2Te_4O_{11}$	$D_x = 7.241 \text{ Mg m}^{-3}$
$M_r = 1036.34$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 3912
a = 12.2953 (8) Å	reflections
b = 5.0596 (3) Å	$\theta = 1.0-27.5^{\circ}$
c = 15.9134 (9) Å	$\mu = 32.74 \text{ mm}^{-1}$
$\beta = 106.202 \ (7)^{\circ}$	T = 293 (2) K
$V = 950.64 (10) \text{ Å}^3$	Spheroid, colourless
Z = 4	$0.04 \times 0.03 \times 0.02 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer	791 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.096$
Absorption correction: numerical	$\theta_{\rm max} = 27.6^{\circ}$
(X-SHAPE; Stoe & Cie, 1998)	$h = -16 \rightarrow 16$
$T_{\rm min} = 0.320, T_{\rm max} = 0.539$	$k = -6 \rightarrow 6$

 $l = -20 \rightarrow 20$

 $T_{\rm min} = 0.320, T_{\rm max} = 0.539$ 10819 measured reflections 1108 independent reflections

Figure 3

Reticulated layers of triple edge-shared $[LuO_8]$ polyhedra parallel to the (001) plane. The Te⁴⁺ cations lie above and below the meshes.

Refinement	
------------	--

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0272P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	where $P = (F_0^2 + 2F_c^2)/3$
$vR(F^2) = 0.074$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.00	$\Delta \rho_{\rm max} = 1.86 \text{ e } \text{\AA}^{-3}$
108 reflections	$\Delta \rho_{\rm min} = -1.38 \text{ e} \text{ Å}^{-3}$
79 parameters	Extinction correction: SHELXL97
	Extinction coefficient: 0.00360 (11)

Table 1

Selected geometric parameters (Å, °).

Lu-O3 ⁱ	2.189 (7)	Te1-O3	1.871 (7)
Lu-O5 ⁱⁱ	2.218 (7)	Te1-O2	1.885 (7)
Lu-O2 ⁱⁱⁱ	2.243 (7)	Te1-O1	1.892 (7)
Lu-O2 ⁱⁱ	2.327 (7)	Te1-O4 ^{vii}	2.567 (7)
Lu-O4 ^{iv}	2.365 (7)	Te2-O5 ^{iv}	1.841 (7)
Lu-O1 ^{iv}	2.416 (7)	Te2-O4 ^{iv}	1.912 (7)
Lu-O4 ^v	2.471 (7)	Te2-O6	2.023 (4)
Lu-O3 ^{vi}	2.480 (7)	Te2-O1 ^{iv}	2.312 (7)
Te2 ^{vi} -O6-Te2	138.9 (5)		
Symmetry codes: (i) x	$-v_{1} z - \frac{1}{2} (ii) - z$	$+^{1}$ y $-^{1}$ $-^{7}$ $+^{1}$ (iii) x	$-v \pm 1$ $z = \frac{1}{2}$ (iv)

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + 1, z - \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (vi) $-x, y, -z + \frac{1}{2}$; (vii) $x - \frac{1}{2}, y + \frac{1}{2}, z$.

Table	2							
Motifs	of	mutual	adjunction	(Hoppe,	1980)	and	coordination	numbers
(CN).								

	O1	O2	O3	O4	O5	O6	CN
Lu	1/1	2/2	2/2	2/2	1/1	0/0	8
Te1	1/1	1/1	1/1	0 + 1/0 + 1	0/0	0/0	3 + 1
Te2	0 + 1/0 + 1	0/0	0/0	1/1	1/1	1/2	3 + 1
CN	2 + 1	3	3	3 + 1	2	2	-

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK* and *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2005); software used to prepare material for publication: *SHELXL97*.

Figure 4

Crystal structure of Lu₂Te₄O₁₁ viewed along the *b* axis. The oxotellurate(IV) double chains connect the reticulated layers of condensed [LuO₈] polyhedra through Te₂-O6-Te₂ bridges.

This work is supported by the state of Baden-Württemberg and the Deutsche Forschungsgemeinschaft (DFG). We thank Dr Falk Lissner and Dr Ingo Hartenbach for the data collection on the diffractometer.

References

- Brandenburg, K. (2005). *DIAMOND*. Version 3.0d. Crystal Impact GbR, Bonn, Germany.
- Castro, A., Enjalbert, R., Lloyd, D., Rasines, I. & Galy, J. (1990). J. Solid State Chem. 85, 100–107.
- Hoppe, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 110-125.
- Höss, P., Meier, S. F. & Schleid, Th. (2004). Z. Kristallogr. Suppl. 21, 162.
- Ijjaali, I., Flaschenriem, C. & Ibers, J. A. (2003). J. Alloys Compd, 354, 115.
- Meier, S. F. & Schleid, Th. (2002). Z. Kristallogr. Suppl. 19, 113.
- Meier, S. F. & Schleid, Th. (2004). Z. Naturforsch. Teil B, 59, 881-888.
- Meier, S. F. & Schleid, Th. (2005). Z. Naturforsch. Teil B, 60. In the press.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shen, Y.-L. & Mao, J.-G. (2004). J. Alloys Compd. 385, 86-89.
- Stoe & Cie (1998). X-SHAPE. Version 1.03. Stoe & Cie, Darmstadt, Germany.
- Weber, F. A., Meier, S. F. & Schleid, Th. (2001). Z. Anorg. Allg. Chem. 627, 2225–2231.